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Abstract
An order doubling process previously used to obtain eighth-order eigenvalues
from the fourth-order Numerov method is applied to the perturbed oscillator
in two dimensions. A simple method of obtaining high order finite difference
operators is reported and an odd parity boundary condition is found to be
effective in facilitating the smooth operation of the order doubling process.

PACS numbers: 03.65.Ge, 02.60.Jh

1. Introduction

There are two traditional ways of using finite difference methods to find the eigenvalues of the
Schrödinger equation in one dimension. The shooting method finds the energy levels one at
a time but has the advantage of permitting the calculation of expectation values without any
storage of the wavefunction [1]. The matrix approach involves a matrix diagonalization but
yields many energy levels along with their associated wavefunctions [2]. The fourth-order
Numerov method gives a wavefunction and an energy value both with an error of order h4,
where h is the constant steplength used in the finite difference calculation. In a previous work
[3] we pointed out that a result of higher accuracy can be obtained by applying the ideas of
the matrix approach to a wavefunction which has been found by a shooting approach. We
simply apply Rayleigh’s principle, which says that an energy with h8 error can be obtained
from an approximate eigencolumn with h4 error by evaluating the Rayleigh quotient for a
symmetric matrix. The technical problem is that of producing a finite difference Hamiltonian
with an eighth-order kinetic energy operator in order to find the expectation value and so
extract the more accurate energy value from the Numerov wavefunction. This approach was
found to work in one dimension [1] and the present work reports some results which were
obtained by trying a similar order doubling approach in two dimensions. Section 2 describes
the construction of high order finite difference versions of the kinetic energy operator, with a
few illustrative examples. Section 3 explains the use of a relaxation process for finding the
wavefunction of a low-lying state in a square region, with emphasis on the use of special odd
parity boundary conditions at the external boundaries. The tables give numerical results which
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demonstrate the effectiveness of the order doubling process and also the results obtained by
applying it to some perturbed oscillator systems. An appendix describes in more detail how
to construct the high order kinetic energy operators.

2. The D2 operator

The problem treated was that of the perturbed oscillator with the Hamiltonian

H = −∇2 + V (2)(x2 + y2) + V (4)(x4 + y4) + V (22)x2y2 (1)

for which comparison results are available in the literature. The finite difference approach
simply uses the explicit form of the potential function and so does not need complicated
matrix elements; we were thus able to carry out a few calibratory calculations for potentials
with different coefficients for x2 and y2 and with extra terms such as x2y4 + x4y2, for which
there are a few previous reported results. The potential energy operator is straightforward
but the finite difference kinetic energy operator has to be constructed for gradually increasing
orders of accuracy in the calculation.

A perusal of the literature showed that several methods have been proposed for obtaining
high order D2 operators, e.g. [4–7]. However there is an extremely simple approach for
producing them which suggests itself quite naturally to anyone used to applying finite
difference methods together with Richardson extrapolation. All that is required is to apply
vector Richardson extrapolation to the initial family of h2 type finite difference operators
representing D2 for the steplengths h, 2h, 3h, etc. Readers who are not fully familiar with
simple Richardson extrapolation will find the explanation of the weighting factors used below
set out in the appendix. The first three members of the initial set of D2 operators are

T 1 = (−2, 1, 0, 0), T 2 = (−2, 0, 1, 0)/4, T 3 = (−2, 0, 0, 1)/9 (2)

(with a division by h2 understood and omitted and with only the right-hand half of the stencil
used because of the exact left–right symmetry). The first stage of Richardson extrapolation
forms a (4,−1)/3 combination of T 1 and T 2 and a (9,−4)/5 combination of T 2 and T 3 in
the standard manner, giving two fourth-order expressions

T 12 = (−5/2, 4/3,−1/12, 0), T 23 = (−13/18, 0, 9/20,−4/45). (3)

The more accurate expression T 12 is selected as the fourth-order finite difference
approximation to the differential operator D2. A (9,−1)/8 combination of T 12 and T 23
is now made to continue the Richardson extrapolation, giving the sixth-order approximation
for D2

T 123 = (−49/18, 3/2,−3/20, 1/90). (4)

It is clear that by setting up an initial row with more members (thus involving longer
rows with more initial zeros) we can continue the Richardson extrapolation to obtain finite
difference approximations of increasingly high order. The calculation can be programmed
to yield the results in the form of exact fractions (as in the example above). Table 1 shows
some high order finite difference approximations for D2 which we obtained by using the exact
fraction form of Richardson extrapolation. This simplifies the tabulation of the coefficients,
although in numerical calculations it sufficed to use a subroutine which produces a double
precision decimal form of them for any required order.
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Table 1. Some high order finite difference operators for D2. An entry such as (−20572) denotes the
fraction −205/72. Only the right-hand half of the stencil is given, in the order C(0), C(1), C(2), . . .
downwards. The results up to order 6 are derived in the text as an example. The results for orders
12 and 14 agree with those of [15], but our fractions are reduced to their lowest terms.

Order 8 Order16

−205 72 −1077 749 352 800
8 5 16 9

−1 5 −14 45
8 315 112 1485

−1 560 −7 396
Order 10 112 32 175

−5269 1800 −2 3861
5 3 16 315 315

−5 21 −1 411 840
5 126 Order 18

−5 1008 −977 8141 317 5200
1 3150 9 5

Order 12 −18 55

−5369 1800 14 165
12 7 −63 2860

−15 56 18 3575
10 189 −2 2145

−1 112 9 70 070
2 1925 −9 777 920

−1 16 632 1 196 9110
Order 14 Order 20

−266 681 88 200 −196 8329 635 040
7 4 20 11

−7 24 −15 44
7 108 40 429

−7 528 −15 572
7 3300 24 3575

−7 308 88 −5 3432
1 840 84 30 119 119

−5 155 584
10 374 1309

−1 923 7800

3. The relaxation process

We shall suppose that the finite difference operator for D2
x at the lattice point (J,K), for a

lattice with uniform spacing h and for a wavefunction W is
∑
M

C(M)W(J + M,K)/h2, (5)

where the summation goes from M = −I to M = I for the finite difference operator of
order 2I and the C(M) are the numbers appearing in the stencils (such as those shown in
equations (2)–(4) above). On adding the x and y contributions and multiplying by −1 to get
the two-dimensional kinetic energy operator we obtain the finite difference operator equation
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at each lattice point (J,K)

−
∑
M

C(M)W(J + M,K)/h2 −
∑
N

C(N)W(J,K + N)/h2

+ V (J,K)W(J,K) = EW(J,K). (6)

This equation is our finite difference simulation of the Schrödinger equation, with V (J,K)

being the potential at the lattice point (J,K).
If a full matrix diagonalization approach to the problem were attempted then the resulting

matrix would be very large and would have a large bandwith, with each basis state needing
two labels to identify it. Since our primary aim is to explore the effectiveness of the simple
order doubling procedure in two dimensions we have adopted a more simple approach to the
eigenvalue problem, by using a relaxation technique. This approach suffices to find five of the
low-lying levels for the Hamiltonian (1) and is easily able to incorporate the special boundary
conditions which we discuss later. In the relaxation (Gauss–Seidel) calculation one lattice
value W(A,B) is held at the fixed value 1 and the lattice is scanned over the indices J and K,
excluding (A,B). Because of the even or odd x ↔ y interchange symmetry of several states
it is often possible to scan only half of the lattice points, with the remainder of the W(J,K)

values being written in by using the required symmetry or antisymmetry of the required state.
For the mixed parity state (0, 1), however, the full lattice has to be scanned, since that state
lacks an x ↔ y interchange symmetry. At each point the W(J,K) terms are isolated on the
right-hand side of equation (6). Thus we have the quantity [E−V (J,K)+2C(0)/h2]W(J,K)

on the right of the equation and the sum on the left excludes the M = 0 and N = 0 cases.
The sum is evaluated and then a revised value WR(J,K) of W(J,K) is found. The present
W(J,K) value is then replaced by the new value W(J,K) + RX(WR(J,K) − W(J,K)),
where RX is a wavefunction relaxation parameter. After the lattice has been scanned to modify
the wavefunction values the choice J = A,K = B is made (having been excluded from the
lattice scan). The equation (6) is then used directly; the full left-hand side is evaluated and
becomes the revised energy estimate ER. The current estimate E is then replaced by the value
E +RE(ER−E), where RE is an energy relaxation parameter. As explained above it is often
possible to scan only about half of the lattice points by exploiting the interchange symmetry
or antisymmetry of the required wavefunction.

If, to use a shorthand notation, we denote the sum on the left of equation (6) by HW(J,K),
then the order doubling process simply involves calculating the sequence of energy expectation
values (Rayleigh quotients) of the form

∑
W(J,K)[HW(J,K)]

/ ∑
W(J,K)W(J,K) (7)

for a sequence of kinetic energy operators of increasing order. Thus, if the relaxation
process has produced a stable wavefunction throughout space and a converged energy E,
then the expectation value sequence extracts more and more digits of the accurate energy
‘hidden’ within the wavefunction. The sums in (7) are taken over all lattice points and
the HW(J,K) term at each point includes external point contributions, as explained in the
following discussion.

The most complicated part of the relaxation process in evaluating HW(J,K) is that which
has to allow for boundary conditions at the x- and y-axes and along the outer boundaries. To
incorporate the even or odd parity of the wavefunction about the x- or y-axis we take care to
represent the nominal value of a W(J,K) at a point beyond the axis by plus or minus the
W(J,K) value at the mirror point which is within the axes. This device is necessary whenever
a high order finite difference formula for an inner point requires the wavefunction value at an
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Table 2. The sequence of expectation values as a function of the finite difference order for the
(0, 0) and (1, 1) states of even x ↔ y interchange parity, for the potential x2y2 and with an initial
relaxation order of 14. Only the last few varying digits are shown. The fixed values NS = 60 and
L = 12 were used, with (A, B) = (1, 1).

(1.108 223 157) (5.0112792)
Order (0, 0) (1, 1)

14 4654 796 494
16 5690 812 514
18 5864 814 872
20 5899 815 279
22 5907 815 360
24 5909 815 377
26 5910 815 382
28 5910 815 384

outer point. For the outer boundaries the crude procedure of setting the wavefunction to zero
at all external points as well as on the boundary will introduce errors when a high order finite
difference method is used. We found that the best way to proceed is to regard the zeros at the
outer walls as being nodes in a wavefunction which is formally regarded as extending smoothly
through the boundary. We do this by simply imposing an antisymmetry condition across the
outer boundaries between the wavefunction values at internal and external lattice points. This
procedure in one dimension was found to lead to a well-behaved Richardson extrapolation
process for the energy [3] and numerical experiments showed that it has a similar beneficial
effect in two dimensions, as was discovered by a preliminary ‘empty box’ calculation for a
system with a zero potential inside a square region. The order doubling procedure converges to
give the correct analytic energy to 14 or so digits when the boundary antisymmetry is imposed,
while the accuracy falls to only 2 or 3 digits if the wavefunction is crudely set to zero at all
external points.

In the relaxation process it is not too difficult to apply the various boundary conditions.
Every time a W(J,K) value is called for it is tested to see whether it is beyond a boundary; if
it is then it is replaced by plus or minus the value at the mirror image point for the appropriate
boundary. Table 2 shows what happens when an initial order of 14 is used in the kinetic
energy operator of equation (1), for the interesting case of the potential x2y2, which Simon
[8] showed to have bound states, despite the existence of apparent escape routes for a particle
along the coordinate axes. Only the first quadrant is used in the relaxation (because of the
high symmetry); a square of side L = 12 was used, with a 60 × 60 grid of lattice points. The
finite difference step length was thus 0.2 in both x and y directions. The final wavefunction
from the 14th-order relaxation was used in a sequence of expectation value calculations up
to order 28, with the appropriate kinetic energy operator being generated in a subroutine
which applied the vector Richardson extrapolation described earlier. The end result of the
relaxation process is quickly predicted by applying the standard Wynn algorithm to the most
recent ten E values. This target value then indicates how well the sequence of raw E values
and the associated wavefunction have converged towards their final steady state. When this
convergence is achieved then the sequence of expectation values of increasing order can be
calculated. This way of increasing the effective finite difference order is, of course, much
quicker than actually carrying out the relaxation process at each of the higher orders up to
28. Test calculations showed that the energy from the expectation value process at each order
agrees very closely with the energy obtained by a full relaxation process at that order. In the
calculations reported here we have used ordinary double precision and have quoted the energy
values to 14 significant decimal digits.
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Table 3. The groundstate (0, 0) energy for V = µ(x2 +y2)+λx2y2, obtained with initial relaxation
order of 20 and with NS = 60. The value of L is decreased as λ increases. (A, B) = (1, 1).

λ L0, L1 µ = 0 µ = 1

0.5 12, 12 0.879 597 303 087 77 2.024 138 321 4157
1 10, 10 1.108 223 157 5910 2.195 918 085 2001
2 9, 9 1.396 273 684 2299 2.339 566 210 1592
3 8, 8 1.598 334 372 8404 2.458 376 906 2368
4 8, 8 1.759 194 606 1756 2.561 626 575 6400
5 8, 8 1.895 034 943 0308 2.653 909 779 5320
10 8, 8 2.387 594 415 0108 3.019 177 714 7720
100 6, 6 5.143 916 233 4257 5.460 970 397 9234
1000 5, 4 11.082 231 575 908 11.232 439 267 210
10 000 2, 2 23.875 944 150 109 23.945 989 627 820

Table 4. The energies of five low-lying states for the Hamiltonian (1), using an initial
relaxation order of 20, with NS = 60 and L = 12. The potential is denoted by the symbol
[V (2), V (4), V (22)]. The states (0, 2) and (1, 3) have odd x ↔ y interchange parity, with
(A, B) = (1, 2).

State [1, 0, 1] [0, 1, 1]

(0, 0) 2.195 918 080 8520 2.240 910 020 1942
(0, 1) 4.526 743 874 3910 5.151 680 290 3930
(1, 1) 7.444 551 361 5700 8.325 296 529 8155
(0, 2) 6.557 803 326 6723 8.733 164 092 4749
(1, 3) 12.332 331 271 118 16.320 612 931 726

[0, 0, 1] [1, 1, 1]
(0, 0) 1.108 223 157 5910 2.872 765 333 0837
(0, 1) 2.378 637 829 3449 6.266 795 083 9935
(1, 1) 5.011 279 281 5384 9.885 096 861 6280
(0, 2) 3.056 081 154 6566 10.226 404 296 576
(1, 3) 8.074 373 925 3878 18.555 036 296 491

The results of table 2 show that the order doubling procedure adds several decimal digits
of accuracy for the case of a starting order of 14 and the accuracy obtained is high. The energy
obtained in correct to 14 decimal digits and this is so for a wide range of test cases which we have
drawn from those tables in the works [9–11] which refer to the Hamiltonian (1). Roughly one
half of the cases treated in [10] and [11] actually involve separable potentials with V (22) = 0
or radial potentials with V (22) = 2V (4). For these cases hypervirial perturbation theory gives
accurate energy levels and thus provides an extra set of test problems to check the accuracy
of the technique of this work, when the angular momentum is given the appropriate values
−1
2 , 1

2 , 3
2 , etc. For most of the calculations we used a starting order of 20 for the relaxation

process, with an escalating order up to 40, so that the expectation value sequence typically
adds 4 decimal digits of accuracy. The L value can be adjusted if physical considerations
make it clear in which (x, y) region the wavefunction is concentrated. For example table 3
shows results for the groundstate of the potentials x2y2 and x2 + y2 + λx2y2. We found some
comparison energies for the second of these potentials in table 3 of [12], although the present
calculation is able to give a greater number of accurate decimal digits for large λ values. As λ

increases the L value can be reduced, since the wavefunction contracts. Table 4 shows selected
energy levels for several potential functions. The energies are quoted to 14 significant digits,
using the full relaxation plus expectation value procedure. However, it was found to be very
easy to obtain a speedy energy accurate to ten significant digits after a few hundred iterations.
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Although the E sequence is far from convergence the sequence of Wynn algorithm extrapolants
based on the last ten E values converges quickly to give an energy of high accuracy.

Expectation values for symmetric potentials can be calculated in two ways. Since the
lattice of wavefunction values is available a direct numerical quadrature can be performed
in principle. However, the expectation value of an even symmetric function F(x, y) can be
found by adding a small term kF (x, y) to the potential and recomputing the energy to give the
small energy shift k〈F(x, y)〉. The use of this energy shift technique confirmed the 〈x2〉, 〈x4〉
and 〈x2y2〉 values for the Hamiltonian (1) which were given in table 3 of [11] but were able to
add several extra digits of accuracy to the results of [11].

4. Conclusion

The specimen results here show that the simple order doubling procedure previously tested
in one dimension is also effective in two dimensions and makes it possible to extract several
more digits of accuracy from a finite difference wavefunction of a nominally lower order. The
increased eigenvalue accuracy then permits the calculation of accurate expectation values by
using an energy differencing approach. Speedy energy estimates of ten or so decimal digits
can be found by applying the Wynn epsilon algorithm to the sequence of energy estimates
of the relaxation process well before that sequence and the associated wavefunction have
converged. While revising this work for publication we made a further literature search and
found that appendix A in [13] lists our odd parity outer boundary condition as one of the ways
of extending a wavefunction ‘off the grid’ although, of course [13] does not involve an order
doubling concept. It is perhaps of interest to note that the approach used in the present work
(keeping the grid size fixed and increasing the order) is the analogue of the p version of finite
element theory, while the usual procedure of using decreasing step lengths and fixed order is
the analogue of the h version of finite element theory [14].

Appendix. The Richardson extrapolation weight table for the D2 operator

The expression T (H) = [W(X + H) + W(X − H) − 2W(X)]/H 2 approximates D2W(X)

with an error which is a sum of terms in even powers of H (with operator coefficients). If
we set down the results for H = h, 2h, 3h, 4h we get the first column of an extrapolation
table. The second column then gives the weighted combination of neighbouring elements
needed to remove the h2 errors. The third column then gives the weighted combinations of
neighbouring second column elements needed to remove the h4 errors, and so on. It is easy
to see how the coefficients in each column are made up from those in the previous column.
Several equivalent algorithms can be used to construct the table automatically in a program
subroutine. It is important to note that this is a table of weighting factors and is thus generally
applicable to many quantities which can be subjected to Richardson extrapolation. The result
of applying the factors to the T (nh) operators is shown in table 1 and in equations (2) and (4)
of the text.

T (1)

[4,−1]/3
T (2) [9,−1]/8

[9,−4]/5 [16,−1]/15
T (3) [16,−4]/12

[16,−9]/7
T (4)
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